

Abstracts

The Coplanar Resonator Technique for Determining the Surface Impedance of $\text{YBa}_{\text{2}}\text{Cu}_{\text{3}}\text{O}_{\text{7-delta}}$ Thin Films

A. Porch, M.J. Lancaster and R.G. Humphreys. "The Coplanar Resonator Technique for Determining the Surface Impedance of $\text{YBa}_{\text{2}}\text{Cu}_{\text{3}}\text{O}_{\text{7-delta}}$ Thin Films." 1995 Transactions on Microwave Theory and Techniques 43.2 (Feb. 1995 [T-MTT]): 306-314.

We describe how coplanar microwave resonators fabricated from patterned thin films of $\text{YBa}_{\text{2}}\text{Cu}_{\text{3}}\text{O}_{\text{7-delta}}$ (YBCO) can be used to measure the ab-plane microwave surface impedance $Z_{\text{sub s}} = R_{\text{sub s}} + jX_{\text{sub s}}$ of the films, in particular the absolute value and temperature dependence of the magnetic penetration depth λ . The current distribution of the resonator is calculated by modelling the resonator as a network of coupled transmission lines of rectangular cross-sections; this is then used to estimate the ab-plane $\lambda(T)$ from the measurements of resonators of different geometries patterned onto the same film. We obtain values of $\lambda(0)$ in the range 150-220 nm. The unloaded quality factors of the linear resonators at 7.95 GHz are around 45000 at 15 K and around 6500 at 77 K. We estimate the corresponding values of the intrinsic $R_{\text{sub s}}$ at 7.95 GHz to be 23 $\mu\Omega$ and 110 $\mu\Omega$ at 15 K and 77 K, respectively. These values are comparable with those of other high quality unpatterned YBCO films reported in the literature. $Z_{\text{sub s}}$ for the best optimised films appears to be insensitive to the effects of patterning.

[Return to main document.](#)